
4.1 Overview

Mathematical induction is one of the techniques which can be used to prove variety

of mathematical statements which are formulated in terms of n, where n is a

positive integer.

4.1.1  The principle of mathematical induction

Let P(n) be a given statement involving the natural  number n such that

(i) The statement is true for n = 1, i.e., P(1) is true (or true for any fixed natural

number) and

(ii) If the statement is true for n = k (where k is a particular but arbitrary natural

number), then the statement is also true for n = k + 1, i.e, truth of P(k) implies

the truth of P(k + 1). Then P(n) is true for all natural numbers n.

4.2  Solved Examples

Short Answer Type

Prove statements in Examples 1 to 5, by using the Principle of Mathematical Induction

for all n � N, that :

Example 1  1 + 3 + 5 + ... + (2n – 1) = n2

Solution  Let the given statement P(n) be defined as P(n) : 1 + 3 + 5 +...+ (2n – 1) =

n2, for n � N. Note that P(1) is true, since

P(1) : 1 = 12

Assume that P(k) is true for some k � N, i.e.,

P(k) : 1 + 3 + 5 + ... + (2k – 1) = k 2

Now, to prove that P(k + 1) is true, we have

1 + 3 + 5 + ... + (2k – 1) + (2k + 1)

= k2 + (2k + 1) (Why?)

= k2 + 2k + 1 = (k + 1) 2
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Thus, P(k + 1) is true, whenever P(k) is true.

Hence, by the Principle of Mathematical Induction, P(n) is true for all n � N.

Example 2 
1
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t t , for all natural numbers n ✞ 2.

Solution  Let the given statement P(n), be given as

1

1

( 1) ( 1)
P( ) : ( 1)
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✄ ☎☎ ✆✝
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n t t , for all natural numbers n ✞ 2.

We observe that

P(2): 
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✟ ✠

Thus, P(n) in true for n = 2.

Assume that P(n) is true for n = k � N.

i.e., P(k) :
1

1

( 1)
✌
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t
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( 1) ( 1)
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✄ ☎k k k

To prove that P(k + 1) is true, we have
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✠ ✠ ✟ ✠ ✠k k k

Thus, P(k + 1) is true, whenever P(k) is true.

Hence, by the Principle of Mathematical Induction, P(n) is true for all natural

numbers n ✞ 2.
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Example 3 
2 2 2

1 1 1 1
1 . 1 ... 1

22 3

�✁ ✂ ✁ ✂ ✁ ✂
✄ ✄ ✄ ☎✆ ✝ ✆ ✝ ✆ ✝

✞ ✟ ✞ ✟ ✞ ✟

n

nn
, for all natural numbers, n ✠ 2.

Solution Let the given statement be P(n), i.e.,

P(n) : 2 2 2

1 1 1 1
1 . 1 ... 1

22 3

�✁ ✂ ✁ ✂ ✁ ✂
✄ ✄ ✄ ☎✆ ✝ ✆ ✝ ✆ ✝

✞ ✟ ✞ ✟ ✞ ✟

n
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, for all natural numbers, n ✠ 2

We, observe that P (2) is true, since

2
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4 1 3 2 1

4 4 2 2

✄ �
☎ ☎

✡

Assume that P(n) is true for some k ☛ N, i.e.,

P(k) : 2 2 2

1 1 1 1
1 . 1 ... 1

22 3

k

kk

�✁ ✂ ✁ ✂ ✁ ✂
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Now, to prove that P (k + 1) is true, we have
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Thus, P (k + 1) is true, whenever P(k) is true.

Hence, by the Principle of Mathematical Induction, P(n) is true for all natural

numbers, n ✠ 2.

Example 4  22n – 1 is divisible by 3.

Solution  Let the statement P(n) given as

P(n) : 22n – 1 is divisible by 3, for every natural number n.

We observe that P(1) is true, since

22 – 1 = 4 – 1 = 3.1 is divisible by 3.

Assume that P(n) is true for some natural number k, i.e.,

P(k): 22k – 1 is divisible by 3, i.e., 22k – 1 = 3q, where q ☛ N

Now, to prove that P(k + 1) is true, we have

P(k + 1) : 22(k+1) – 1 = 22k + 2 – 1 =  22k . 22 – 1

= 22k . 4 – 1 = 3.22k  + (22k – 1)
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= 3.22k + 3q

= 3 (22k + q) = 3m, where m � N

Thus P(k + 1) is true, whenever P(k) is true.

Hence, by the Principle of Mathematical Induction P(n) is true for all natural

numbers n.

Example 5  2n + 1 < 2n, for all natual numbers n ✁ 3.

Solution  Let P(n) be the given statement, i.e., P(n) : (2n + 1) < 2n  for all natural

numbers, n ✁ 3. We observe that P(3) is true, since

2.3 + 1 = 7 < 8 = 23

Assume that P(n) is true for some natural number k, i.e., 2k + 1 < 2k

To prove P(k + 1) is true, we have to show that 2(k + 1) + 1 < 2k+1. Now, we have

2(k + 1) + 1 = 2 k + 3

= 2k + 1 + 2 < 2k + 2 < 2k . 2 = 2k + 1.

Thus P(k + 1) is true, whenever P(k) is true.

Hence, by the Principle of Mathematical Induction P(n) is true for all natural

numbers, n ✁ 3.

Long Answer Type

Example 6 Define the sequence a
1
, a

2
, a

3
... as follows :

a
1
 = 2, a

n
 = 5 a

n–1
, for all natural numbers n ✁ 2.

(i) Write the first four terms of the sequence.

(ii) Use the Principle of Mathematical Induction to show that the terms of the sequence

satisfy the formula a
n
 = 2.5n–1  for all natural numbers.

Solution

(i) We have a
1
 = 2

a
2
 = 5a

2–1
 = 5a

1
 = 5.2 = 10

a
3
 = 5a

3–1
 = 5a

2
 = 5.10 = 50

a
4
 = 5a

4–1
 = 5a

3
 = 5.50 = 250

(ii) Let P(n) be the statement, i.e.,

P(n) : a
n
 = 2.5 n–1 for all natural numbers. We observe that P(1) is true

Assume that P(n) is true for some natural number k, i.e., P(k) : a
k
 = 2.5 k – 1.

Now to prove that P (k + 1) is true, we have
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P(k + 1) : a 
k + 1

 = 5.a
k
 = 5 . (2.5k – 1)

= 2.5k = 2.5(k + 1)–1

Thus P(k + 1) is true whenever P (k) is true.

Hence, by the Principle of Mathematical Induction, P(n) is true for all natural numbers.

Example 7  The distributive law from algebra says that for all real numbers c, a
1
 and

a
2
, we have c (a

1
 + a

2
) = ca

1
 + ca

2
.

Use this law and mathematical induction to prove that, for all natural numbers, n � 2,

if c,
 
a

1
, a

2
, ...,a

n
 are any real numbers, then

c (a
1
 + a

2
 + ... + a

n
) = ca

1
 + ca

2
 + ... + ca

n

Solution Let P(n) be the given statement, i.e.,

P(n) : c (a
1
 + a

2
 + ... + a

n
) = ca

1
 + ca

2
 + ... ca

n
 for all natural numbers n � 2, for c, a

1
,

a
2
, ... a

n
 ✁ R.

We observe that    P(2) is true since

c(a
1
 + a

2
) = ca

1
 + ca

2
(by distributive law)

Assume that P(n) is true for some natural number k, where k > 2, i.e.,

P(k) : c (a
1
 + a

2 
+ ... + a

k
) = ca

1
 + ca

2
 + ... + ca

k

Now to prove P(k + 1) is true, we have

P(k + 1) : c (a
1
 + a

2
 + ... + a

k
 + a

k + 1
)

= c ((a
1
 + a

2
 + ... + a

k
) + a

k + 1
)

= c (a
1
 + a

2
 + ... + a

k
) + ca

k + 1
(by distributive law)

= ca
1
 + ca

2
 + ... + ca

k
 + ca

k + 1

Thus P(k + 1) is true, whenever P (k) is true.

Hence, by the principle of Mathematical Induction, P(n) is true for all natural

numbers n � 2.

Example 8  Prove by induction that for all natural number n

sin ✂ + sin (✂ + ✄) + sin (✂ + 2✄)+ ... + sin (✂ + (n – 1) ✄)

=

1
sin ( )sin

2 2

sin
2

n n☎ ✆✝ ✞
✟✠ ✆ ✡ ☛

☞ ✌
✆✝ ✞

✡ ☛
☞ ✌

Solution  Consider P (n) : sin ✂ + sin (✂ + ✄) + sin (✂ + 2✄) + ... + sin (✂ + (n – 1) ✄)
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=

1
sin ( )sin

2 2

sin
2

� ✁✂ ✄
☎✆ ✁ ✝ ✞

✟ ✠
✁✂ ✄

✝ ✞
✟ ✠

n n

, for all natural number n.

We observe that

P (1) is true, since

P (1) : sin ✡ =

sin ( 0) sin
2

sin
2

✁
☎✆

✁

Assume that P(n) is true for some natural numbers k, i.e.,

P (k) : sin ✡ + sin (✡ + ☛) + sin (✡ + 2☛) + ... + sin (✡ + (k – 1)☛)

=

1
sin ( )sin

2 2

sin
2

� ✁✂ ✄
☎✆ ✁ ✝ ✞

✟ ✠
✁✂ ✄

✝ ✞
✟ ✠

k k

Now, to prove that P (k + 1) is true, we have

P (k + 1) : sin ✡ + sin (✡ + ☛) + sin (✡ + 2☛) + ... + sin (✡ + (k – 1) ☛☞ + sin (✡ + k☛)

=

1
sin ( )sin

2 2
sin ( )

sin
2

� ✁✂ ✄
☎✆ ✁ ✝ ✞

✟ ✠ ✆ ☎ ✆ ✁
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✝ ✞
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k

=

✌ ✍
1

sin sin sin sin
2 2 2
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2

� ✁ ✁✂ ✄
☎ ✆ ✁ ✆ ☎ ✆ ✁✝ ✞

✟ ✠
✁

k k
k

= 

cos cos cos cos
2 2 2 2

2 sin
2

✁ ✁ ✁ ✁✂ ✄ ✂ ✄ ✂ ✄ ✂ ✄
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✟ ✠ ✟ ✠ ✟ ✠ ✟ ✠
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= 

cos cos
2 2

2 sin
2

k
� �✁ ✂ ✁ ✂

✄☎ ☎ ✄✆ �✆✝ ✞ ✝ ✞
✟ ✠ ✟ ✠

�
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sin sin
2 2
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✄ ✆✝ ✞ ✝ ✞
✟ ✠ ✟ ✠

�
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= 

sin sin ( 1)
2 2

sin
2

✡ ✡☛ ☞ ☛ ☞
✌ ✍ ✍✎ ✏ ✎ ✏
✑ ✒ ✑ ✒

✡

k
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Thus P (k + 1) is true whenever P (k) is true.

Hence, by the Principle of Mathematical Induction P(n) is true for all natural number n.

Example 9  Prove by the Principle of Mathematical Induction that

1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = ✓n + 1)! – 1 for all natural numbers n.

Solution  Let P(n) be the given statement, that is,

P(n) : 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = ✓n + 1)! – 1 for all natural numbers n.

Note that P (1) is true, since

P (1) : 1 × 1! = 1 = 2 – 1 = 2!  – 1.

Assume that P(n) is true for some natural number k, i.e.,

P(k) : 1 × 1! + 2 × 2! + 3 × 3! + ... + k × k! = (k + 1)! – 1

To prove P (k + 1) is true, we have

P (k + 1) : 1 × 1! + 2 × 2! + 3 × 3! + ... + k × k! + (k + 1) × (k + 1)!

= ✓k + 1)! – 1 + (k + 1)! × (k + 1)

= (k + 1 + 1) (k + 1)! – 1

= (k + 2) (k + 1)! – 1 =  ((k + 2)!  – 1

Thus P (k + 1) is true, whenever P (k) is true. Therefore, by the Principle of Mathematical

Induction, P (n) is true for all natural number n.

Example 10  Show by the Principle of Mathematical Induction that the sum S
n
 of the

n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given  by
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S
n
 =

2

2

( 1)
, if is even

2

( 1)
, if is odd

2

� ✁
✂
✂
✄

✁✂
✂☎

n n
n

n n
n

Solution Here P(n) : S
n
 = 

2

2

( 1)
, when  is even

2

( 1)
, when  is odd

2

� ✁
✂
✂
✄

✁✂
✂☎

n n
n

n n
n

Also, note that any term T
n
 of the series is given by

T
n
 =

2

2

if is odd

2 if is even

✆✝
✞
✝✟

n n

n n

We observe that P(1) is true since

P(1) : S
1
 = 12 = 1 = 

2
1.2 1 .(1 1)

2 2

✁
✠

Assume that P(k) is true for some natural number k, i.e.

Case 1  When k is odd, then k + 1 is even. We have

P (k + 1) : S
k + 1

 = 12 + 2 × 22 + ... + k2 + 2 × (k  + 1)2

=

2
( 1)

2

✁k k
+ 2 × (k + 1)2

=
( 1)

2

✁k
 [k2 + 4(k + 1)] (as k is odd, 1 2 + 2 × 22 + ... + k2 = k2 

( 1)

2

✁k
)

=
1

2

✡k
[k2 + 4k + 4]

=
21

( 2)
2

✁
✁

k
k = (k + 1) 

2
[( 1) 1]

2

✁ ✁k

So P(k + 1) is true, whenever P(k) is true in the case when k is odd.

Case 2  When k is even, then k + 1 is odd.
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Now,     P (k + 1) : 12 + 2 × 22 + ... + 2.k2 + (k + 1)2

� ✁
2

1

2

✂
✄

k k
+ (k + 1)2  (as k is even, 12 + 2 × 22 + ... + 2k2 = k 

2
( 1)

2

✂k
)

� ✁
2 21 ( 2) ( 1) (( 1) 1)

2 2

✂ ✂ ✂ ✂ ✂
✄ ✄

k k k k

Therefore, P (k + 1) is true, whenever P (k) is true for the case when k is even. Thus

P (k + 1) is true whenever P (k) is true for any natural numbers k. Hence, P (n) true

for all natural numbers.

Objective Type Questions

Choose the correct answer in Examples 11 and 12 (M.C.Q.)

Example 11  Let P(n) : “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer

for which P (n) is true is

(A) 1 (B) 2 (C) 3 (D) 4

Solution  Answer is D, since

P (1) : 2 < 1 is false

P (2) : 22 < 1 × 2 is false

P (3) : 23 < 1 × 2 × 3 is false

But P (4) : 24 < 1 × 2 × 3 × 4 is true

Example 12  A student was asked to prove a statement P (n) by induction. He proved

that P (k + 1) is true whenever P (k) is true for all k > 5 ☎ N and also that P (5) is true.

On the basis of this he could conclude that P (n) is true

(A) for all n ☎ N (B) for all n > 5

(C) for all n ✆ 5 (D) for all n < 5

Solution  Answer is (C), since P(5) is true and P(k + 1) is true, whenever P (k) is true.

Fill in the blanks in Example 13 and 14.

Example 13  If P (n) : “2.42 n + 1 + 33n+1 is divisible by ✝ for all n ☎ N” is true, then the

value of ✝ is ____

Solution  Now, for n = 1,

2.42+1 + 33+1 = 2.43 + 34
 
= 2.64 + 81 = 128 + 81 = 209,

for n = 2, 2.45 + 37

 
= 8.256 + 2187 = 2048 + 2187 = 4235
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Note that the H.C.F. of 209 and 4235 is 11. So 2.42n +1 + 3 3n+1 is divisible by 11.

Hence, � is 11

Example 14  If P (n) : “49n + 16n + k is divisible by 64 for n ✁ N” is true, then the least

negative integral value of k is ______.

Solution  For n = 1, P(1) : 65 + k is divisible by 64.

Thus k, should be – 1 since, 65 – 1 = 64 is divisible by 64.

Example 15  State whether the following proof (by mathematical induction) is true or

false for the statement.

P(n): 12 + 22 + ... + n2 =
( 1) (2 1)

6

✂ ✂n n n

Proof  By the Principle of Mathematical induction, P(n) is true for n = 1,

12 = 1 = 
1(1 1) (2 1 1)

6

✂ ✄ ✂
. Again for some k ☎ 1, k2 = 

( 1) (2 1)

6

✂ ✂k k k
. Now we

prove that

(k + 1)2 =
( 1) (( 1) 1) (2( 1) 1)

6

k k k✆ ✆ ✆ ✆ ✆

Solution  False

Since in the inductive step both the inductive hypothesis and what is to be proved

are wrong.

4.3 EXERCISE

Short Answer Type

1. Give an example of a statement P(n) which is true for all n ☎ 4 but P(1), P(2)

and P(3) are not true. Justify your answer.

2. Give an example of a statement P(n) which is true for all n. Justify your answer.

Prove each of the statements in Exercises 3 - 16 by the Principle of Mathematical

Induction :

3. 4n – 1 is divisible by 3, for each natural number n.

4. 23n – 1 is divisible by 7, for all natural numbers n.

5. n3 – 7n + 3 is divisible by 3, for all natural numbers n.

6. 32n – 1  is divisible by 8, for all natural numbers n.
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7. For any natural number n, 7n – 2n is divisible by 5.

8. For any natural number n, xn – yn is divisible by x – y, where x and y are any

integers with x � y.

9. n3 – n is divisible by 6, for each natural number n ✁ 2.

10. n (n2 + 5) is divisible by 6, for each natural number n.

11. n2 < 2n for all natural numbers n ✁ 5.

12. 2n < (n + 2)! for all natural number n.

13.
1 1 1

...
1 2

✂ ✄ ✄ ✄n
n

, for all natural numbers n ✁ 2.

14. 2 + 4 + 6 + ... + 2n = n2 + n for all natural numbers n.

15. 1 + 2 + 22 + ... + 2n = 2n+1 – 1 for all natural numbers n.

16. 1 + 5 + 9 + ... + (4n – 3) = n (2n – 1) for all natural numbers n.

Long Answer Type

Use the Principle of Mathematical Induction in the following Exercises.

17. A sequence a
1
, a

2
, a

3
 ... is defined by letting a

1
 = 3 and a

k
 = 7a

k–1
 for all natural

numbers k ✁ 2. Show that a
n
 = 3.7n–1 for all natural numbers.

18. A sequence b
0
, b

1
, b

2
 ... is defined by letting b

0
 = 5 and b

k 
= 4 + b

k – 1
 for all

natural numbers k. Show that b
n
 = 5 + 4n for all natural number n using

mathematical induction.

19. A sequence d
1
, d

2
, d

3
 ... is defined by letting d

1
 = 2 and d

k
 =

1☎kd

k
for all natural

numbers, k ✁ 2. Show that d
n
 = 

2

!n
for all n ✆ N.

20. Prove that for all  n ✆ N

cos ✝ + cos (✝ + ✞ ) + cos (✝ + 2✞) + ... + cos (✝ + (n – 1) ✞)

=

1
cos sin

2 2

sin
2

n n✟ ✠✡ ☛✟ ✠ ✟ ✠
☞✌ ☛✍ ✎ ✍ ✎✍ ✎

✏ ✑ ✏ ✑✏ ✑
☛

21. Prove that, cos ✒ cos 2✒ cos22✒ ... cos2n–1✒  
sin 2

2 sin

✓
✔

✓

n

n  , for all n ✆ N.

22. Prove that, sin ✒ + sin 2✒ + sin 3✒ + ... + sin n✒

✕ ✖1sin
sin

2 2

sin
2

✌✓
✓

✔
✓

nn

, for all n ✆ N.
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23. Show that 

5 3
7

5 3 15
� �

n n n
 is a natural number for all n ✁ N.

24. Prove that 
1 1 1 13

...
1 2 2 24n n n
✂ ✂ ✂ ✄

✂ ✂

, for all natural numbers  n > 1.

25. Prove that number of subsets of a set containing n distinct elements is 2n, for all

n ✁ N.

Objective Type Questions

Choose the correct answers in Exercises 26 to 30 (M.C.Q.).

26. If 10n + 3.4 n+2 + k is divisible by 9 for all n ✁  N, then the least positive integral

value of k is

(A) 5 (B) 3 (C) 7 (D) 1

27. For all n ✁  N, 3.5 2n+1 + 23n+1 is divisible by

(A) 19 (B) 17 (C) 23 (D) 25

28. If xn – 1 is divisible by x – k, then the least positive integral value of k is

(A) 1 (B) 2 (C) 3 (D) 4

Fill in the blanks in the following :

29. If P(n) : 2n < n!, n ✁ N, then P(n) is true for all n ☎ ________.

State whether the following statement is true or false. Justify.

30. Let P(n) be a statement and let P(k) ✆ P(k + 1), for some natural number k,

then P(n) is true for all n ✁ N.



5.1 Overview

We know that the square of a real number is always non-negative e.g. (4)2 = 16 and

(– 4)2 = 16. Therefore, square root of 16 is ± 4. What about the square root of a

negative number? It is clear that a negative number can not have a real square root. So

we need to extend the system of real numbers to a system in which we can find out the

square roots of negative numbers. Euler (1707 - 1783) was the first mathematician to

introduce the symbol i (iota) for positive square root of – 1 i.e., i = 1� .

5.1.1  Imaginary numbers

Square root of a negative number is called an imaginary number., for example,

9 1 9� ✁ �  = i3, 7 1 7 7� ✁ � ✁ i

5.1.2 Integral powers of i

i = 1� , i 2 = – 1, i 3 = i 2 i  = – i , i 4 = (i 2)2 = (–1)2 = 1.

To compute in for n > 4, we divide n by 4 and write it in the form n = 4m + r, where m is

quotient and r is remainder (0 ✂ r ✂ 4)

Hence in = i4m+r = (i4)m . ( i)r = (1)m ( i)r = ir

For example, (i)39 = i 4 × 9 + 3  = (i4)9 . (i)3 = i3 = – i

and (i)–435 = i – (4 × 108 + 3) = (i)– (4 × 108) . (i)– 3

= 4 108 3 4

1 1
.

( ) ( ) ( )
✄ ✄

i
i

i i i
(i) If a and b are positive real numbers, then

1 1� ☎ � ✁ � ☎ � ✁ ☎ ✁ �a b a b i a i b ab

(ii) .a b ab✆  if a and b are positive or at least one of them is negative or

zero. However, a b ab✝ if a and b, both are negative.

Chapter 5

COMPLEX NUMBERS AND

QUADRATIC EQUATIONS
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5.1.3 Complex numbers

(a) A number which can be written in the form a + ib, where a, b are real numbers

and i = 1�  is called a complex number.

(b) If z = a + ib is the complex number, then a and b are called real and imaginary

parts, respectively, of the complex number and written as Re (z) = a, Im (z) = b.

(c) Order relations “greater than” and “less than” are not defined for complex

numbers.

(d) If the imaginary part of a complex number is zero, then the complex number is

known as purely real number and if real part is zero, then it is called

purely imaginary number, for example, 2 is a purely real number because its

imaginary part is zero and 3i is a purely imaginary number because its real part

is zero.

5.1.4 Algebra of complex numbers

(a) Two complex numbers z
1
 = a + ib and z

2
 = c + id are said to be equal if

a = c and b = d.

(b) Let z
1
 = a + ib and z

2
 = c + id be two complex numbers then

z
1
 + z

2
 = (a + c) + i (b + d).

5.1.5 Addition of complex numbers satisfies the following properties

1. As the sum of two complex numbers is again a complex number, the set of

complex numbers is closed with respect to addition.

2. Addition of complex numbers is commutative, i.e., z
1
 + z

2
 =  z

2
 + z

1

3. Addition of complex numbers is associative, i.e., (z
1
 + z

2
) + z

3
 =  z

1
 + (z

2
 + z

3
)

4. For any complex number z = x + i y, there exist 0, i.e., (0 + 0i) complex number

such that z + 0 = 0 + z = z, known as identity element for addition.

5. For any complex number z = x + iy, there always exists a number –  z = – a – ib

such that z + (– z) = (– z) + z = 0 and is known as the additive inverse of z.

5.1.6 Multiplication of complex numbers

Let z
1
 = a + ib and z

2
 = c + id, be two complex numbers. Then

z
1 
. z

2
 = (a + ib) (c + id) = (ac  – bd) + i (ad + bc)

1. As the product of two complex numbers is a complex number, the set of complex

numbers is closed with respect to multiplication.

2. Multiplication of complex numbers is commutative, i.e., z
1
.z

2
 = z

2
.z

1

3. Multiplication of complex numbers is associative, i.e., (z
1
.z

2
) . z

3
 = z

1
 . (z

2
.z

3
)
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4. For any complex number z = x + iy, there exists a complex number 1, i.e., (1 + 0i)

such that

z . 1 = 1 . z = z, known as identity element for multiplication.

5. For any non zero complex number z = x + i y, there exists a complex number 
1

z

such that 
1 1

1� ✁ � ✁z z
z z

, i.e., multiplicative inverse of a + ib = 2 2

1 ✂
✁

✄ ✄

a ib

a ib a b
.

6. For any three complex numbers z
1
, z

2
 and z

3
 ,

z
1
 . (z

2
 + z

3
) = z

1
 . z

2
 + z

1
 . z

3

and (z
1
 + z

2
) . z

3
 = z

1
 . z

3
 + z

2
 . z

3

i.e., for complex numbers multiplication is distributive over addition.

5.1.7 Let z
1
 = a + ib and z

2
( ☎ 0) = c + id. Then

z
1
 ✆  z

2
 = 

1

2

z

z
= 

✝

✝

a ib

c id
= 2 2 2 2

( ) ( )✄ ✂
✄

✄ ✄

ac bd bc ad
i

c d c d

5.1.8 Conjugate of a complex number

Let z = a + ib be a complex number. Then a complex number obtained by changing the

sign of imaginary part of the complex number is called the conjugate of z and it is denoted

by z , i.e., z = a – ib .

Note that additive inverse of z is – a – ib but conjugate of z is a – ib.

We have :

1. ( )✁z z

2. z + z  = 2 Re (z) ,  z – z = 2 i Im(z)

3. z = z , if z is purely real.

4. z + z  = 0 ✞  z is purely imaginary

5. z . z = {Re (z)}2 + {Im (z)}2 .

6.
1 2 1 2 1 2 1 2( ) , ( ) –✟ ✠ ✟ ✡ ✠z z z z z z z z

7.
1 1

1 2 1 2 2
2 2

( )
( . ) ( ) ( ), ( 0)

( )

z z
z z z z z

z z

☛ ☞
✁ ✁ ✌✍ ✎✏ ✑

5.1.9  Modulus of a complex number

Let z = a + ib be a complex number. Then the positive square root of the sum of square

of real part and square of imaginary part is called modulus (absolute value) of z and it

is denoted by z  i.e., 2 2✁ ✄z a b
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In the set of complex numbers z
1
 > z

2
 or z

1
 < z

2
 are meaningless but

1 2 1 2or� ✁z z z z

are meaningful because 1z  and 2z are real numbers.

5.1.10 Properties of modulus of a complex number

1. z  = 0 ✂  z = 0 i.e., Re (z) = 0 and Im (z) = 0

2. z = z = ✄ z

3. – z   ☎   Re (z) ☎ z  and  – z  ☎ Im (z) ☎ z

4. z z  = 
2

z , 
22

✆z z

5.
11

1 2 1 2 2

2 2

. , ( 0)✆ ✆ ✝
zz

z z z z z
z z

6.
2 2 2

1 2 1 2 1 22Re ( )✞ ✆ ✞ ✞z z z z z z

7.
2 2 2

1 2 1 2 1 22 Re ( )✄ ✆ ✞ ✄z z z z z z

8. 1 2 1 2✞ ✟ ✞z z z z

9. 1 2 1 2✄ ✠ ✄z z z z

10.
2 2 2 22 2

1 2 1 2 1 2( ) ( )✄ ✞ ✞ ✆ ✞ ✞az bz bz az a b z z

In particular:

2 2 2 2

1 2 1 2 1 22 ( )✡ ☛ ☛ ☞ ☛z z z z z z

11. As stated earlier multiplicative inverse (reciprocal) of a complex number

z = a + ib  (✌ 0) is

1

z
 = 2 2

✍

✎

a ib

a b
 = 2

z

z

5.2  Argand Plane

A complex number z = a + ib can be represented by a unique point P (a, b) in the

cartesian plane referred to a pair of rectangular axes. The complex number 0 + 0i

represent the origin 0 ( 0, 0). A purely real number a,  i.e., (a + 0i) is represented by the

point (a, 0) on x - axis. Therefore,  x-axis is called real axis. A purely imaginary number
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ib, i.e., (0 + ib) is represented by the point (0, b) on y-axis. Therefore, y-axis is called

imaginary axis.

Similarly, the representation of complex numbers as points in the plane is known as

Argand diagram. The plane representing complex numbers as points is called complex

plane or Argand plane or Gaussian plane.

If two complex numbers z
1
 and z

2
 be represented by the points P and Q in the complex

plane, then

1 2�z z  = PQ

5.2.1 Polar form of a complex number

Let P be a point representing a non-zero complex number z = a + ib  in the

Argand plane. If OP makes an angle ✁ with the positive direction of x-axis,

then z = r (cos✁ + isin✁) is called the polar form of the complex number, where

r = z = 2 2✂a b  and tan✁ = 
b

a
. Here ✁ is called argument or amplitude of z and we

write it as arg (z) = ✁.

The unique value of ✁ such that – ✄ ☎ ✁ ☎ ✄ is called the principal argument.

arg (z
1
 . z

2
) = arg (z

1
) + arg (z

2
)

arg 
1

2

✆ ✝
✞ ✟
✠ ✡

z

z
 = arg (z

1
) – arg (z

2
)

5.2.2  Solution of a quadratic equation

The equations ax 2 + bx  + c = 0, where a, b and c are numbers (real or complex, a ☛ 0)

is called the general quadratic equation in variable x. The values of the variable satisfying

the given equation are called roots of the equation.

The quadratic equation ax2 + bx  + c = 0 with real coefficients has two roots given

by 
– + D – – D

and
2 2

b b

a a
, where D = b2 – 4ac, called the discriminant of  the equation.

☞ Notes

1. When D = 0, roots of the quadratic equation are real and equal. When D > 0,

roots are real and unequal.

Further, if a, b, c ✌ Q and D is a perfect square, then the roots of the equation

are rational and unequal, and if a, b, c ✌Q and D is not a perfect square, then

the roots are irrational and occur in pair.
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When D < 0, roots of the quadratic equation are non real (or complex).

2. Let �, ✁ be the roots of the quadratic equation ax2 + bx + c = 0, then sum of

the roots

(� + ✁) = 
b

a

✂
 and the product of the roots ( � . ✁) = 

c

a
.

3. Let S and P be the sum of roots and product of roots, respectively, of a quadratic

equation. Then the quadratic equation is given by x2 – Sx + P = 0.

5.2  Solved Exmaples

Short Answer Type

Example 1 Evaluate : (1 + i)6 + (1 – i)3

Solution (1 + i)6 = {(1 + i)2}3 = (1 + i2 + 2i)3 = (1 – 1 + 2 i)3 = 8 i3 = – 8i

and (1 – i)3 = 1 – i3 – 3i + 3i2 = 1 +  i – 3i – 3 = – 2 – 2i

Therefore, (1 + i)6 + (1 – i)3 = – 8i – 2 – 2i = – 2  – 10i

Example 2 If 

1

3( )✄x iy  = a + ib, where x, y, a, b ☎ R, show that ✆
x y

a b
 = – 2 (a2 + b2)

Solution 

1

3( )✄x iy  =  a + ib

✝ x + iy = (a + ib)3

i.e., x + iy = a3 + i3 b3 + 3iab (a + ib)

= a3 – ib3 + i3a2b – 3ab2

= a3 – 3ab2  + i  (3a2b –  b3)

✝ x =  a3  – 3ab2 and y = 3a2b – b3

Thus

x

a = a2  – 3b2 and 
y

b
=  3a2 – b2

So,
x y

a b
✂ = a2 – 3b2 – 3a2 + b2  = – 2 a2 – 2b2 = – 2 (a2 + b2).

Example 3 Solve the equation z2 = z , where z = x + iy

Solution z2 = z     ✝   x2 –  y2  + i2xy =  x – iy

Therefore,   x2 –  y2  =  x       ... (1)       and       2xy = – y       ... (2)
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From  (2), we have  y = 0 or x = 
1

2
�

When y = 0, from (1), we get x2 – x = 0,   i.e., x = 0 or x = 1.

When x = 
1

2
✁ , from (1), we get y2 = 

1 1

4 2
✂     or  y2 = 

3

4
,  i.e.,  y = 

3

2
✄ .

Hence, the solutions of the given equation are

0 + i0, 1 + i0, 
1

2
� + i 

3

2
, 

1 3

2 2
i☎ ☎ .

Example 4  If the imaginary part of 
2 1

1

✆

✆

z

iz
 is – 2, then show that the locus of the point

representing z in the argand plane is a straight line.

Solution  Let z = x + iy . Then

2 1

1

✝

✝

z

iz
 =

2( ) 1 (2 1) 2

( ) 1 (1 )

✝ ✝ ✝ ✝
✞

✝ ✝ ✟ ✝

x iy x i y

i x iy y ix

=
{(2 1) 2 } {(1 ) }

{(1 ) } {(1 ) }

✆ ✆ � �
✠

� ✆ � �

x i y y ix

y ix y ix

=

2 2

2 2

(2 1 ) (2 2 2 )

1 2

✆ � ✆ � � �

✆ � ✆

x y i y y x x

y y x

Thus

2 2

2 2

2 1 2 2 2
Im

1 1 2

✡ ☛☞ ✌ ✌ ✌
✍✎ ✏

☞ ☞ ✌ ☞✑ ✒

z y y x x

iz y y x

But Im 
2 1

1

✡ ☛☞
✎ ✏

☞✑ ✒

z

iz
=  – 2 (Given)

So

2 2

2 2

2 2 2
2

1 2

� � �
✓�

✆ � ✆

y y x x

y y x

✔ 2y – 2y2 – 2x2 – x = – 2 – 2y2 + 4y – 2x2

i.e., x + 2y – 2 = 0, which is the equation of a line.

Example 5  If 
22

1 1� ✓ ✆z z , then show that z lies on imaginary axis.

Solution  Let z = x + iy. Then  | z 2 – 1 | = | z |2
 
+ 1
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�
22 2

1 2 1✁ ✁ ✂ ✄ ✂ ✂x y i xy x iy

� (x2 – y2 –1)2 + 4x2y2 = (x2 + y2 + 1)2

� 4x2 = 0    i.e.,    x = 0

Hence z lies on y-axis.

Example 6  Let z
1
 and z

2
 be two complex numbers such that 1 2 0✂ ✄z i z  and

arg (z
1
 z

2
) = ☎. Then find arg (z

1
).

Solution  Given that 1 2 0✆ ✝z i z

� z
1
 = i z

2 
,  i.e.,  z

2
 = – i z

1

Thus arg (z
1
 z

2
) = arg z

1
 + arg (–  i z

1
) = ☎

� arg 2
1(– )i z = ☎

� arg (– i )  + arg 2
1( )z  = ☎

� arg (– i )  + 2 arg (z
1
) = ☎

�
2

✞✟
+ 2 arg (z

1
) = ☎

� arg (z
1
) = 

3

4

✠

Example 7  Let z
1
 and z

2
 be two complex numbers such that 

1 2 1 2✂ ✄ ✂z z z z .

Then show that arg (z
1
) – arg (z

2
) = 0.

Solution  Let z
1
 = r

1
 (cos✡

1
 + i sin ✡

1
) and z

2
 = r

2
 (cos✡

2
 + i sin ✡

2
)

where r
1
 = 1z , arg 1( )z = ✡1

, r
2
 = 2z , arg (z

2
) = ✡2

.

We have, 1 2✂z z
 
= 1 2✂z z

=
1 1 2 2 2 2 1 2(cos cos ) (cos sin )☛ ✂ ☛ ✂ ☛ ✂ ☛ ✄ ✂r r r r

= 2 2 2
1 2 1 2 1 2 1 22 cos( ) ( )✂ ✂ ☛ ✁☛ ✄ ✂r r r r r r  � cos (✡

1
 – ✡

2
 ) =1

� ✡1
 – ✡2

   i.e. arg z
1
 = arg z

2

Example 8  If z
1
, z

2
, z

3
 are complex numbers such that

1 2 3

1 2 3

1 1 1
1✄ ✄ ✄ ✂ ✂ ✄z z z

z z z
, then find the value of 1 2 3✂ ✂z z z .

Solution  1 2 3 1✄ ✄ ✄z z z
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�
22 2

1 2 3 1✁ ✁ ✁z z z

� 1 1 2 2 3 3 1✁ ✁ ✁z z z z z z

�
1 2 3

1 2 3

1 1 1
, ,✁ ✁ ✁z z z

z z z

Given that
1 2 3

1 1 1
1✂ ✂ ✁

z z z

� 1 2 3 1✂ ✂ ✁z z z ✄ i.e., 1 2 3 1✂ ✂ ✁z z z

� 1 2 3 1✂ ✂ ✁z z z

Example 9  If a complex number z lies in the interior or on the boundary of a circle of

radius 3 units and centre (– 4, 0), find the greatest and least values of 1✂z .

Solution  Distance of the point representing z from the centre of the circle is

( 4 0) 4☎ ☎ ✂ ✁ ✂z i z .

According to given condition 4 3✂ ✆z .

Now 1 4 – 3 4 3✂ ✁ ✂ ✆ ✂ ✂ ☎z z z  3 3 6✆ ✂ ✁

Therefore, greatest value of |z + 1| is 6.

Since least value of the modulus of a complex number is zero, the least value of

1 0✂ ✁z .

Example 10  Locate the points for which 3 4✝ ✝z

Solution  4✝ ✞z  x2 + y2 < 16 which is the interior of circle with centre at origin and

radius 4 units, and 3✟ ✞z  x2 + y2 > 9 which is exterior of circle with centre at origin

and radius 3 units. Hence 3 < z  < 4 is the portion between two circles x2 + y2 = 9 and

x2 + y2 = 16.

Example 11  Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = – 2 – 3 i

Solution  x + 2 = – 3 i  �  x2 + 4x + 7 = 0

Therefore 2x4 + 5x3 + 7x2 – x + 41 = (x2 + 4x + 7) (2x2 – 3x + 5) + 6

= 0 × (2x2 – 3x + 5) + 6 = 6.
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Example 12  Find the value of P such that the difference of the roots of the equation

x2 – Px + 8 = 0 is 2.

Solution  Let �, ✁ be the roots of the equation x2 – Px + 8 = 0

Therefore � + ✁ = P and  � . ✁ = 8.

Now � – ✁ = ✂ 2(  +  )  – 4✄ ☎ ✄☎

Therefore 2 = 
2

P 32✆ ✝

✞ P2 – 32 = 4, i.e., P = ✂ 6.

Example 13  Find the value of a such that the sum of the squares of the roots of the

equation x2 – (a – 2) x – (a + 1) = 0 is least.

Solution  Let �, ✁  be the roots of the equation

Therefore, � + ✁ = a – 2 and  �✁ = – ( a + 1)

Now �2 + ✁2 = (� + ✁)2 – 2�✁

= (a – 2)2 + 2 (a + 1)

= (a – 1)2 + 5

Therefore, �2 + ✁2 will be minimum if (a – 1)2 = 0, i.e., a = 1.

Long Answer Type

Example 14  Find the value of k if for the complex numbers z
1
 and z

2
,

2 2

1 2 1 21✟ ✟ ✟z z z z =
2 2

1 2(1 )(1 )✟ ✟k z z

Solution

L.H.S. =
2 2

1 2 1 21✠ ✠ ✠z z z z

= 1 2 1 2 1 2 1 2(1 ) (1 ) ( ) ( )✠ ✠ ✠ ✠ ✠z z z z z z z z

= 1 2 1 2 1 2 1 2(1 ) (1 ) ( ) ( )✠ ✠ ✠ ✠ ✠z z z z z z z z

= 1 + z
1 1 2 2 1 1 2 2✠ ✠z z z z z z z

=
2 2 2 2

1 2 1 21✡ ☛ ✠ ✠z z z z

=
2 2

1 2(1 ) (1 )✟ ✟z z

R.H.S. = k (1 –  
2 2

1 2) (1 )z z☞

✞ k = 1
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Hence, equating LHS and RHS, we get k = 1.

Example 15  If z
1
 and z

2
 both satisfy z + 2 1z z� ✁  arg (z

1
 – z

2
) = 

4

✂
, then find

Im (z
1
 + z

2
).

Solution  Let z = x + iy, z
1
 = x

1
 + iy

1
 and z

2
 = x

2
 + iy

2
.

Then z + z = 2 1✄z

☎ (x + iy) + (x – iy) = 2 1✄ ✆x iy

☎ 2x = 1 + y2 ... (1)

Since z
1
 and z

2
 both satisfy (1), we have

2x
1
 = 1 + y

1

2 ... and 2x
2 
= 1 + y

2

2

☎ 2 (x
1
 – x

2
) = (y

1
 + y

2
) (y

1
 – y

2
)

☎ 2  = (y
1
 + y

2
) 1 2

1 2

✝ ✞✄
✟ ✠

✄✡ ☛

y y

x x
... (2)

Again z
1
 – z

2
 = (x

1
 – x

2
) + i (y

1
 – y

2
)

Therefore, tan ☞ = 1 2

1 2

✄

✄

y y

x x
, where ☞ = arg (z

1
 – z

2
)

☎
1 2

1 2

tan
4

✌✍
✎

✌

y y

x x
since

4

✍✏ ✑
✒✎✓ ✔

✕ ✖

i.e., 1 2

1 2

1
✄

✗
✄

y y

x x

From (2), we get 2 = y
1
 + y

2
,  i.e., Im (z

1
 + z

2
) = 2

Objective Type Questions

Example 16  Fill in the blanks:

(i) The real value of ‘a’ for which 3i3 – 2ai2 + (1 – a)i  + 5 is real is ________.

(ii) If 2z �  and arg (z) = 
4

✂
, then z = ________.

(iii) The locus of z satisfying arg (z) =  
3

✂
 is _______.

(iv) The value of 4 –3( 1)✄ ✄
n , where n ✘ N, is ______.
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(v) The conjugate of  the complex number 
1

1

�
✁

i

i
 is _____.

(vi) If a complex number lies in the third quadrant, then its conjugate lies in

the ______.

(vii) If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______.

Solution

(i) 3i3 – 2ai2 + (1 – a)i  + 5 = –3i + 2a + 5 + (1 – a)i

= 2a + 5 + (– a – 2) i, which is real if – a – 2 = 0 i.e. a = – 2.

(ii) z = 
1 1

cos sin 2 2 (1 )
4 4 2 2

✂ ✂ ✄ ☎✄ ☎✆ ✝ ✆ ✝ ✆✞ ✟ ✞ ✟
✠ ✡ ✠ ✡

z i i i

(iii) Let z = x + iy.  Then its polar form is z = r (cos ☛ + i sin ☛), where tan ☞✝
y

x
 and

☛ is arg (z). Given that 
3

✂
☞✝ . Thus.

 tan 
3

✂
= 

y

x
 3✌ ✍y x , where x > 0, y > 0.

Hence, locus of  z is the part of  3✝y x  in the first quadrant except origin.

(iv) Here 
4 –3 4 3 4 3

3

1
(– 1) ( ) ( ) ( )

( )

✎ ✎✏ ✝ ✏ ✝ ✏ ✏ ✝
✏

n n n
i i i

i

= 3 2

1 1
✝ ✝ ✝ ✏

✏
i

i
ii i

(v)

2

2

1 1 1 1 2 1 1 2

1 1 1 1 11

✏ ✏ ✏ ✆ ✏ ✏ ✏
✝ ✑ ✝ ✝ ✝ ✏

✆ ✆ ✏ ✆✏
i i i i i i

i
i i i i

Hence, conjugate of 
1

1

✏
✆

i

i
is i.

(vi) Conjugate of a complex number is the image of the complex number about the

x-axis. Therefore, if a number lies in the third quadrant, then its image lies in

the second quadrant.

(vii) Given that  (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy ... (1)

✒ ✓ ✔(2 ) (2 2 ) (2 3 )... (2 ) ( )✆ ✆ ✆ ✆ ✝ ✆ ✝ ✏i i i ni x iy x iy

i.e., (2 – i) (2 – 2i) (2 – 3 i) ... (2 – ni) = x – iy ... (2)
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Multiplying (1) and (2), we get 5.8.13 ... (4 + n2) = x2 + y2.

Example 17  State true or false for the following:

(i) Multiplication of a non-zero complex number by i rotates it through a right

angle in the anti- clockwise direction.

(ii) The complex number cos� + i sin� can be zero for some �.

(iii) If a complex number coincides with its conjugate, then the number must lie on

imaginary axis.

(iv) The argument of the complex number z = (1 +i 3 ) (1 + i) (cos � + i sin �) is

7

12

✁
+ �

(v) The points representing the complex number z for which 1 1✂ ✄ ☎z z lies in

the interior of a circle.

(vi) If three complex numbers z
1
, z

2
 and z

3
 are in A.P., then they lie on a circle in

the complex plane.

(vii) If n is a positive integer, then the value of in  + (i)n+1 + (i)n+2  +   (i)n+3 is 0.

Solution

(i) True. Let z = 2 + 3 i be complex number represented by OP. Then iz = –3 + 2i,

represented by OQ, where if OP is rotated in the anticlockwise direction through

a right angle, it coincides with OQ.

(ii) False.  Because cos� + isin� = 0 ✆ cos� = 0 and sin� = 0. But there is no

value of � for which cos� and sin� both are zero.

(iii) False, because x + iy = x – iy ✆ y = 0 ✆ number lies on x-axis.

(iv) True, arg (z) = arg (1 + i 3 ) + arg (1 + i) + arg (cos� + isin�)

7

3 4 12

✁ ✁ ✁
✝ ✝✞✟ ✝ ✞

(v) False, because 1 1✂ ✂ ✄ ✂ ☎x iy x iy

✆ (x + 1)2 + y2 < (x – 1)2 + y2
  
which gives 4x < 0.

(vi) False, because if  z
1
, z

2
 and z

3
 are in A.P., then 1 3

2
2

✂
✠

z z
z ✆ z

2
 is the midpoint

of z
1
 and z

3
, which implies that the points  z

1
, z

2
, z

3
 are collinear.

(vii) True, because in + ( i)n+1 + (i)n +2 + (i)n+3

= in (1 + i +  i2 + i3) = in (1 + i – 1 – i)

= in (0) = 0
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Example 18 Match the statements of column A and B.

Column A Column B

(a) The value of 1+i2 + i4 + i6 + ... i 20 is (i) purely imaginary complex number

(b) The value of i–1097 is (ii) purely real complex number

(c) Conjugate of 1+i lies in (iii) second quadrant

(d)
1 2

1

�

✁

i

i
 lies in (iv) Fourth quadrant

(e) If a, b, c ✂ R and b2 – 4ac  < 0, (v) may not occur in conjugate pairs

then the roots of the equation

ax2 + bx + c = 0 are non real

(complex) and

(f) If a, b, c ✂ R and b2 – 4ac  > 0, (vi) may occur in conjugate pairs

and b2 – 4ac is a perfect

square, then the roots of the

equation ax 2 + bx + c = 0

Solution

(a) ✄ (ii), because 1 + i2 + i4 + i6 + ... + i20

= 1 – 1 + 1 – 1 + ... + 1 = 1 (which is purely a real complex number)

(b) ✄ (i), because i–1097 = 1097 4 274 1

1 1

( ) ☎ ✆✝
i i

 =  4 274 2

1 1

{( ) } ( )
✝ ✝ ✝ ✁

i
i

ii i i

which is purely imaginary complex number.

(c) ✄ (iv), conjugate of 1 + i is 1 – i, which is represented by the point (1, –1) in

the fourth quadrant.

(d) ✄ (iii), because 
1 2 1 2 1 1 3 1 3

1 1 1 2 2 2

� � � ✁ �
✝ ✞ ✝ ✝ ✁ �

✁ ✁ �

i i i i
i

i i i
, which is

represented by the point 
1 3

,
2 2

✟ ✠
✁✡ ☛

☞ ✌
 in the second quadrant.

(e) ✄ (vi), If  b2 – 4ac  < 0 = D < 0, i.e., square root of D is a imaginary

number, therefore, roots are 
Imaginary Number

2

✁ ✍
✝

b
x

a
, i.e., roots are in

conjugate pairs.


